Problem Set #1, CHEM/BCMB 4190/6190/8199

1). Which of the following statements are True, False, or Possibly True, for the hypothetical element X?
 a. The ground state spin is I=0 for ${}_{24}^{52}X$.
 b. The ground state spin is I=0 for ${}_{31}^{70}X$.
 c. The ground state spin is I=1/2 for ${}_{45}^{21}X$.
 d. The ground state spin is I=1 for ${}_{48}^{22}X$.
 e. The ground state spin is I=1/2 for ${}_{29}^{14}X$.

 a. True: both the mass number and the atomic number are even. Therefore, I=0.
 b. False: the mass number is even and the atomic number is odd. Therefore, I is integral and non-zero.
 c. Possibly True: the mass number is odd, therefore the spin is half-integral (might be 1/2, might also be 3/2 or 5/2, etc.).
 d. False: both the mass number and the atomic number are even. Therefore, I=0.
 e. Possibly True: same rationale as ‘c’.

2). The resonance/precession frequency of a 1H nucleus (ν_{1H}) in a 14.09 T (Tesla) magnet is 600.0 MHz.

 a. What is the resonance frequency of a ^{13}C nucleus (ν_{13C}) in the same magnet? ($\gamma_{1H} = 26.7519 \times 10^7$ rad/Ts, $\gamma_{13C} = 6.7283 \times 10^7$ rad/Ts).

 b. What is the resonance frequency of the 1H nucleus in a 11.74 T magnet?

 a. $\nu_{1H} = \frac{\gamma_{1H}}{2\pi} B_0$ and $\nu_{13C} = \frac{\gamma_{13C}}{2\pi} B_0$, therefore

 $\frac{\nu_{1H}}{\nu_{13C}} = \frac{600.0 \text{ MHz}}{\nu_{13C}} = \frac{\gamma_{1H}}{2\pi} \frac{B_0}{\gamma_{13C}} = \frac{\gamma_{1H}}{\gamma_{13C}} = \frac{26.7519 \times 10^7}{6.7283 \times 10^7}$

 $\nu_{13C} = 150.9 \text{ MHz}$

 b. $\nu_{1H, 14.09T} = \frac{\gamma_{1H}}{2\pi} \frac{14.09}{\nu_{1H, 11.74T}} = \frac{\gamma_{1H}}{\gamma_{1H}} \frac{14.09}{11.74}$

 $\nu_{1H, 11.74T} = 499.9 \text{ MHz} \approx 500 \text{ MHz}$
3). How does the magnitude of the bulk/macroscopic magnetization compare for:

a. 1H and 13C spins?
 b. 1H and 13C spins at natural abundance (assume the natural abundance of 1H is 100% and 13C is 1.11%)?
 c. 1H and 17O spins?

(\(\gamma_{1H} = 26.7519 \times 10^7\) rad/Ts, \(\gamma_{13C} = 6.7283 \times 10^7\) rad/Ts, \(\gamma_{17O} = -3.6280 \times 10^7\) rad/Ts)

a.

\[
M_0 = \frac{N\gamma^2 h^2 B_0}{3k_B T}\frac{I(I+1)}{2} \quad \text{("h" here is “h-bar”, Planck’s constant divided by 2\(\pi\))}
\]

\[
M_{0\,1H} = \frac{N\gamma_{1H}}{3k_B T} = \frac{26.7519 \times 10^7}{6.7283 \times 10^7} = 15.809
\]

So, the bulk magnetization is about 16 times as large for 1H compared to 13C, or 13C magnetization is about 6.3% that of 1H.

b.

\[
M_{0\,1H} = \frac{N\gamma_{1H}}{3k_B T} = 100 \times \frac{26.7519 \times 10^7}{6.7283 \times 10^7} = 1424
\]

So, the bulk magnetization is about 358 times as large for 1H compared to 13C at natural abundance, or 13C magnetization is about 0.07% that of 1H.

c.

\[
M_{0\,1H} = \frac{N\gamma_{1H}}{3k_B T} = \frac{26.7519 \times 10^7}{-3.6280 \times 10^7} = 4.660
\]

So, the bulk magnetization is about 4.7 times as large for 1H as for 17O, or 17O magnetization is about 21.4% that of 1H.

4). a. How does the sensitivity of the NMR signal compare for 1H and 13C spins?
 b. For equivalent numbers of 1H and 13C nuclei, how many more scans are necessary to produce 13C spectra with signal-to-noise equivalent to 1H spectra?
a. Sensitivity is proportional to the electromotive force (ε) induced in the receiver coil by the bulk magnetic moment. The magnitude of ε is proportional to the rate of change in the magnetic moment:

$$\varepsilon \propto \frac{dM}{dt} = \gamma M_0 B$$

Remember, $M_0 = \frac{N\gamma^2h^2B_0I(I+1)}{3k_BT}$ ("h" here is "h-bar", Planck’s constant divided by 2π), so

$$\varepsilon \propto \gamma M_0 B = \frac{N\gamma^3h^2B_0^2I(I+1)}{3k_BT}.$$

So, whereas the magnitude of the bulk magnetization was dependent on γ^2, the sensitivity is dependent on γ^3.

Thus, $\varepsilon_{1H} = \frac{N\gamma_{1H}^3h^2B_0^2I(I+1)}{3k_BT}$ and $\varepsilon_{13C} = \frac{N\gamma_{13C}^3h^2B_0^2I(I+1)}{3k_BT}$, so $\varepsilon_{1H}/\varepsilon_{13C} = \gamma_{1H}^3/\gamma_{13C}^3 = \left(\frac{26.7519 \times 10^7 \text{ rad/Ts}}{6.7283 \times 10^7 \text{ rad/Ts}}\right)^3 = 62.856$. So, 1H nuclei are about 63 times more sensitive than 13C nuclei, or the sensitivity of a 13C nucleus is about 1.59% that of a 1H nucleus.

b. In NMR, signal-to-noise (S/N) improves with the square root of the number of scans ($N^{1/2}$). So, since the 1H sensitivity – S/N – from “a” above is 62.856 times better than 13C, it will take $(62.856)^2 = 3951$ 13C scans for every 1H scan to get equivalent S/N for equivalent numbers of 1H and 13C nuclei.

5). A diagram of the Zeeman levels/states for 1H is shown to the right.

a. How do you determine the number of levels/states for a given nucleus?
b. How many levels/states are there for 17O?
c. What are the magnetic quantum numbers for the 17O states?
d. How do you determine the energy of a given state?
e. Draw the Zeeman diagram for 17O.

a. The number of Zeeman levels is equal to $2I+1$, where I is the spin quantum number.
b. For 17O there are $2(5/2)+1 = 6$ levels.
c. $m = (-I, -I+1, ..., I-1, I)$, so, for $I = 5/2$, these are $-5/2, -3/2, -1/2, 1/2, 3/2$, and $5/2$.
d. $E = \mu_z B_0 = -m\gamma hB_0$
e. $E = \mu_z B_0 = -m\gamma hB_0$
6). The frequency difference (\(\Delta \nu\)) between two \(^1\)H signals in a \(^1\)H spectrum is 3000 Hz when the spectrum is acquired with a magnetic field strength of 11.74 T (corresponding to a \(^1\)H resonance/observe frequency of 500 MHz).
 a. What is the chemical shift difference (\(\Delta \delta\)) between the two signals?
 b. What would be the frequency difference between the two \(^1\)H signals if the spectrum was acquired with a 14.09 T magnet?
 c. If the spectrum was acquired with a magnetic field strength of 14.09 T (600 MHz \(^1\)H resonance/observe frequency), what would be the chemical shift difference?

 a. \[
 \Delta \delta = \frac{\Delta \nu}{\text{observe frequency}} \times 10^6 = \frac{3000 \text{ Hz}}{500 \text{ MHz}} \times 10^6 = \frac{3000 \text{ Hz}}{500 \text{ Hz}} = 6.0 \text{ "ppm" ("parts per million")}
 \]

 b. \[
 \Delta \nu = \frac{\Delta \delta \times \text{observe frequency}}{10^6} = \frac{6.0 \times 600 \text{ MHz}}{10^6} = 3600 \text{ Hz}
 \]

 c. The chemical shift difference would still be 6.0 ppm. The chemical shift is independent of magnetic field strength.

 \[
 \Delta \delta = \frac{\Delta \nu}{\text{observe frequency}} \times 10^6 = \frac{3600 \text{ Hz}}{600 \text{ MHz}} \times 10^6 = \frac{3600 \text{ Hz}}{600 \text{ Hz}} = 6.0 \text{ "ppm"}
 \]

7). The measured magnitude of \(^2J_{\text{H,H}}\) for a particular AX spin system using a 500 MHz (11.74T) magnet is 4.5 Hz. What is the magnitude of this coupling using a 600 MHz (14.09T) magnet?

The measured magnitude for the coupling is the same (4.5 Hz). The magnitudes of scalar couplings are independent of the \(B_0\) field strength.

8). You have found that \(\tau_p\) (pulse width/length) for a 90° (\(\pi/2\)) pulse for your sample is 10 \(\mu\)s.
 a. Sketch a bar graph of signal amplitude versus \(\tau_p\) for your sample for \(\tau_p\) values of 0, 5, 10, 15, 20, 25, 30, 35, and 40 \(\mu\)s.
 b. Explain, in general, the relationship between the transverse component of the bulk magnetization, \(M_y\), \(\tau_p\), the pulse angle \(\alpha\), and the NMR signal amplitude.

![Signal amplitude vs \(\tau_p\) graph](image)
b. The amplitude of the signal induced in the receiver coil of an NMR instrument is proportional to M_y, the transverse component of the bulk magnetization. In turn, both M_y and α are dependent on τ_ν. For a given pulse power, α increases from 0° to 90° with incremental increases in τ_ν, and M_y increases as $M \sin \alpha$.

9. The 1H and 13C NMR spectra for phenol are shown below. The chemical shifts for the 1H signals are 5.4, 6.8, 6.9 and 7.25 ppm. The chemical shifts for the 13C signals are 115, 121, 130, and 155 ppm. The 1H and 13C chemical shifts for benzene are 7.27 and 128 ppm respectively.

a. Match the chemical shifts with the correct proton and carbon atoms:

- 1H$^\alpha$ = 13C$^\alpha$
- 1H$^\beta$ = 13C$^\beta$
- 1H$^\gamma$ = 13C$^\gamma$
- 1H$^\delta$ = 13C$^\delta$
- 1H$^\epsilon$ = 13C$^\epsilon$

b. Justify your answers to ‘a’. Draw resonance structures, state which nuclei are shielded or deshielded relative to one another and to benzene and why.

b. In the 1H spectrum, the signals around 7 ppm are due to the aromatic protons, as in benzene. The hydroxyl signal is the signal at 5.4 ppm, and is deshielded relative to aliphatic protons due to the attached (electronegative) oxygen atom. Likewise, in the 13C spectrum, the signals at 115-130 are due to 13C atoms 2-6, as in benzene, whereas the signal at 155 is due to 13C$^\alpha$, which is deshielded relative to benzene due to attachment to the oxygen atom. Resonance structures can be drawn (below) where the lone pair of electrons on the oxygen is donated to the C-O bond,
thus localizing a negative charge at either the ortho (2 or 6) or para (4) positions. Because the charge density, and thus the shielding, at the ortho and para positions will be greater than at the meta position, the 1H and ^{13}C chemical shifts at the meta positions will be expected to be larger. Thus, $\delta^1H_1=\delta^1H_2=7.25$, and $\delta^{13}C_1=\delta^{13}C_2=130$. Finally, one would expect that the charge density at the ortho position would be larger than at the para position because of its proximity to the oxygen and the C=O double bond, and thus would be more shielded. So, the 1H and ^{13}C chemical shifts at the ortho position ($\delta^1H_3=\delta^1H_5=6.8$, $\delta^{13}C_3=\delta^{13}C_5=115$) are smaller than at the para position ($\delta^1H_4=6.9$, $\delta^{13}C_4=121$).

10). If the longitudinal relaxation time for a given nucleus is 10 seconds, how long after a 90° pulse will we have to wait until the magnitude of the z component of the bulk magnetization (M_z) is equal to 95% of the magnitude of the bulk magnetization before the pulse (M_0)?

We assume, as did Bloch, that this relaxation process is first order, and $M_z = M_0(1-e^{-t/T_1})$.

\[
\frac{M_z}{M_0} = 0.95 = (1-e^{-t/T_1}) = (1-e^{-t/10s}) \quad e^{-t/10s} = 0.05 \quad -t/10s = -2.9957 \quad t \approx 30s
\]