Nucleic Acid NMR

Part II
α and ζ pose problems
Determinants of 31P chem shift.

ε and ζ correlate. $\zeta = -317 - 1.23 \varepsilon$

Ranges

<table>
<thead>
<tr>
<th></th>
<th>χ</th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>δ</th>
<th>ε</th>
<th>ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-DNA</td>
<td>-119</td>
<td>-61</td>
<td>180</td>
<td>57</td>
<td>122</td>
<td>-187</td>
<td>-91</td>
</tr>
<tr>
<td>Bf-DNA</td>
<td>-102</td>
<td>-41</td>
<td>136</td>
<td>38</td>
<td>139</td>
<td>-133</td>
<td>-157</td>
</tr>
<tr>
<td>Af-DNA</td>
<td>-154</td>
<td>-90</td>
<td>-149</td>
<td>47</td>
<td>83</td>
<td>-175</td>
<td>-45</td>
</tr>
</tbody>
</table>

Sanger, Principles of nucleic acid
Springer 1984
Backbone Experiments: CT-NOESY, CT-COSY

Σ Backbone Experiments

• Z. Wu, N. Tjandra, and A. Bax, Measurement of H3'-31P dipolar couplings in a DNA oligonucleotide by constant-time NOESY difference spectroscopy, J. Biomol. NMR 19, 367-370 (2001).

• BioNMR in Drug Research 2003 Edito: O. Zerbe
 Methods for the Measurement of Angle Restraints from Scalar, Dipolar Couplings and from Cross-Correlated Relaxation: Application to BiomacromoleculesChapter Author: Christian Griesinger: J-Resolved Constant Time Experiment for the Determination of the Phosphodiester Backbone Angles α and ζ.
Resonance Assignment DNA/RNA (Homonuclear)

A) Non Exchangeable Protons
 • Aromatic Spin Systems
 NOESY, DQFCOSY, TOCSY
 • Sugar Spin Systems
 DQFCOSY, TOCSY
 • Sequential Assignment
 NOESY, 31P-1H HETCOR

B) Exchangeable Protons
 1D, NOESY (11, WG, etc)

C) Correlation of Exchangeable and Non Exchangeable Protons
 NOESY (excitation sculpting)
A) Assignment of Non Exchangeable Protons

Base and Sugar

COSY/TOCSY
C: H5-H6
U: H5-H6

TOCSY
A: H8-H2 (H2 are generally difficult to assign)

COSY/TOCSY
H1’ -H2’ (H2’’') etc

J Zhang, A Spring, M W Germann J. Am. Chem. Soc. 131 5
Resonance Assignment DNA/RNA (Homonuclear)

Sequential Assignment
NOESY Connectivity (e.g. α C Decamer)

G1-H1' and G1-H8 interactions are highlighted in the NOESY spectrum.

[Graph showing the NOESY connectivity and highlighted peaks and interactions]
DNA Miniduplex

5'-CATGCATG
GTACGTAC-5'

Base protons

Sugar H1' protons

C [H5-H6]
\textbf{31P NMR}

1. \textbf{AlphaC}

Diagram Notes:

- **3'**
- **4'**
- **5', 5''**

Program Code:

```
;mwgcropr, AMX version
;X-H correlation. H-detected
;Sklenar et al., 1986, FEBS, 208, 94-98
;===================================================
;**X-H correlation. H-detected**
;Sklenar et al., 1986, FEBS, 208, 94-98
;===================================================

d12=20u
p2=p1*2

1 ze
d11 dhi
2 d11
3 d12
p2 ph0
d2
l0 to 3 times l1
d3
(p3 ph2):d
d0
(p1 ph1) (p3 ph1):d
go=2 ph31
d11 wr #0 if #0 id0 ip2 zd
l0 to 3 times td1
do
exit

ph0=0
ph1=0
ph2=0 0 2 2
ph31=2 2 0 0

;>>>>>>>>>>>>>>>DELAYS
;d0 = 3us
;d2 = 50ms
;d3 = 3us
;d11= 30 msec

;>>>>>>>>>>>>>>>PULSES
;p1 = 90 deg proton pulse h1 = 1
;p2 = 180 deg proton pulse h1 = 1
;p3 = 90 deg X pulse

;>>>>>>>>>>>>>>>>LOOP-COUNTER
;l1 = loop counter for presaturaton

;L1*d2 = relaxation delay (L1=40, d2=50ms >>2s)
;>>>>>>>>>>>>>>>>COMMENTS

;xd=pw = 0, nd0 = 2, in0 = 1/(2*SW)
;ns = 4*n, ds = 4, MC2= TPPI
;-----------------------END of PROGRAM---------------
```
B) Exchangeable Protons

1D Imino Proton Spectrum
Assignment of Exchangeable Protons
Correlation between exchangeable and non-exchangeable protons
Heteronuclear Methods

Resonance Assignment of RNA/DNA by Heteronuclear NMR
13C and 15N correlations

A) Exchangeable Protons

- 15N-1H HSQC
- 15N edited NOESY HSQC (3D)

B) Non Exchangeable Protons

- **Base/Sugar**
 - 13C-1H HSQC
 - HCCH -TOCSY HCCH-COSY
 - HCN, H(CNC)H, H(CNH)

- **Base-Sugar**

- **Sequential**
 - 13C Edited NOESY-HSQC
 - PH, P(C)H, HCP

C) Correlation of Exchangeable and Non Exchangeable Protons

- A, C, G, U, T- specific
- 13C Edited NOESY-HSQC

D) Base Pairing
15N Chemical Shifts in RNA: (1H, 15N) HSQC Spectrum
Non-exchangeable protons: **CT-HSQC/HMQC**

Use **Constant time experiments** (CC couplings in F1)
Non-exchangeable protons: HCCH-Type Experiment

HCCH COSY
HCCH TOCSY

\[1^H \rightarrow 13^C \rightarrow 13^C \rightarrow 1^H \]

INEPT COSY INEPT
RELAY TOCSY

F1 x F2: correlate a specific sugar \(^1H\) to its own sugar \(^1H\)'s and their respective \(^13C\)'s.

F3 x F2: Correlate each of its own sugar \(^1H\)'s to the \(^13C\) of a specific \(^1H\)
Assignments of Non-Exchangeable Protons:
2D (1H, 15N) HCN

Allows for unambiguous correlations between 1H of ribose and H$_6$/H$_8$ of base
Correlation of Exchangeable and Non-Exchangeable Protons: G-specific H(NC)-TOCSY(C)H
Correlation of Exchangeable and Non-Exchangeable Protons: A-specific (H)N(C)-TOCSY(C)H
Correlation of Exchangeable and Non-Exchangeable Protons:
U-specific H(NCCC)H
Correlation of Exchangeable and Non-Exchangeable Protons:
C-specific H(NCCC)H
Direct Observation of Hydrogen Bonds by $^2J_{NN}$ Couplings: Watson-Crick Base-Pairs

$J_{NN} = 6.3$ Hz

$J_{NN} = 6.7$ Hz

Observation of Hydrogen Bonds by $^{2}J_{NN}$ Couplings: Non-Watson-Crick Base-Pairs

- Imino-hydrogen-bonded GA ($J_{NN} = 5$ Hz)
- Reversed Hoogsteen AU ($J_{NN} = 5.5$ Hz)
- AA mismatch ($J_{NN} = 2.5$ Hz)
- Hoogsteen GC in GC+G triple ($J_{NN} = 10$ Hz)
- Hoogsteenen TA TAT Triple ($J_{NN} = 6.6$ Hz)
- Arginine-RNA ($J_{NN} = 6.0$ Hz)
Structure Determination:

I) Assignment

II) Local Analysis
 • glycosidic torsion angle, sugar puckering, backbone conformation, base pairing

III) Global Analysis
 • sequential, inter strand/cross strand, dipolar coupling

Nucleic Acids have few protons.....
 • NOE accuracy
 > account for spin diffusion
 • Backbone may be difficult to fully characterize
 • Dipolar couplings
What do we know?
• Distance, Torsion, H-Bond constraints

What do we want?
• Low energy structures

Methods
• Distance Geometry
• Simulated annealing, rMD
• Torsion angle dynamics (DYANA)
• Mardigras/IRMA/Morass
Dipolar Couplings… is the kink real?

- Dipolar couplings add to J coupling.
- They show up as a field or alignment media dependence of the coupling.
- If the overall orientation of the molecule is known the orientation of the vectors can be determined.

\[
D_{\text{max}}^{IS} = -\frac{\mu_0 \gamma_I \gamma_S h}{4\pi^2 r_{IS}^3}
\]

\[
D^{IS} = D_{\text{max}}^{IS} \left\langle \frac{1}{2} \left(3\cos^2 \theta - 1\right) \right\rangle
\]
RMSD (all atoms) 0.66

C3' DG5 1 -- H3'
C4' DT 2 -- H4'
C6 DT 2 -- H6
C1' DC 4 -- H1'
C1' ADA 5 -- H1'
C4' ADA 5 -- H4'
C2 ADA 5 -- H2
C4' DC 6 -- H4'
C8 DA 8 -- H8
C1' DC 9 -- H1'
C3' DC 9 -- H3'
C6 DC 9 -- H6
C1' DG3 10 -- H1'
C4' DG3 10 -- H4'
C1' DC5 11 -- H1'
C4' DC5 11 -- H4'
C1' DT 13 -- H1'
C6 DT 13 -- H6
C4' DC 14 -- H4'
C6 DC 14 -- H6
C8 DG 15 -- H8
C1' DT 16 -- H1'
C1' DG 17 -- H1'
C3' DC3 20 -- H3'
C4' DC3 20 -- H4'
General references, NMR techniques, sample preparation, analysis

NMR structure determination: DNA DNA/RNA, pseudorotation analysis, dynamics. See also referenced quoted in the listed papers

Bax, A., Lerner, L. "MEASUREMENT OF H-1-H-1 COUPLING-CONSTANTS IN DNA FRAGMENTS BY 2D NMR." J Magn Reson. 79 429 - 438, 1988..

Multinuclear experiments, DNA/RNA

P Schmieder, J H Ippel, H van den Elst, G A van der Marel, J H van Boom, C Altona, z Kessler (1992) Heteronuclear NMR of DNA with the heteronucleus in natural amino facilitated assignment and extraction of coupling constants. Nucleic Acids Res. 2 4751.

Trantirek L., Steff R., Masse J.E., Feigon J. and Sklenar V. (2002)"Determination of the torsion angles in uniformly 13C-labeled nucleic acids from vicinal coupling const 3J(C2)/H1 and 3J(C6)/H1" J. Biomol. NMR., 23(1):1-12

Szyperski, T., Ono, A., Fernández, C., Iwai, H., Tate, S., Wüthrich, K. and Kainosho N Measurement of 3J(C2)/P Scalar Couplings in a 17 kDa Protein Complex with 13 Labeled DNA Distinguishes the B I and BII Phosphate Conformations of the DNA Chem. Soc. 119, 9901-990

C. Richter, B. Reif, K. Wörner, S. Quant, J. W. Engels, C. Griesinger, and H. Schwalbe *New Experiment for the Measurement of 3J(C,P) Coupling Constants including and 3J(C4)/P,i+1) coupling constants in Oligonucleotides* J. Biomol. NMR 12, 2