2D Correlation Experiments: HSQC, HMQC, HMBC,

BCMB/CHEM 8190
Two Dimensional NMR Spectroscopy

- Two-dimensional (2D) NMR spectra are presented along two orthogonal axes (rather than one for 1D NMR)
 - typically, the two axes are chemical shifts (correlation spectroscopy), but not limited to this (i.e. J-coupling, etc.)
 - convention is typically for directly observed dimension to be presented along the x-axis
 - correlations between x- and y-axis variables based on:
 - J coupling (COSY, TOCSY, HSQC)
 - dipolar interactions (NOESY)
 - chemical exchange (EXSY)
Two Dimensional NMR Spectroscopy

- A general scheme for 2D experiments describes these as constructed from 'preparation', 'evolution' and 'mixing' elements
 - preparation: create magnetization of interest
 - evolution 1: increment t_1 time period, evolve magnetization with information of interest (gives y-axis information, indirectly observed dimension)
 - mixing: mix magnetization to get observable magnetization of interest
 - evolution 2: acquisition period (magnetization evolves, direct observation)

- Example: COSY (correlation spectroscopy)
 - correlates chemical shifts of coupled nuclei (usually 1H)
 - used as a stand-alone experiment for 1H-1H correlation, and as an element in other pulse sequences for magnetization transfer/mixing
 - preparation is d_1 and first 90° pulse: initial d_1 period allows for recovery of magnetization (T_1 recovery), pulse creates initial transverse magnetization
 - evolution: magnetization evolves with chemical shift and scalar coupling
 - mixing period (second 90° pulse) uses scalar couplings to transfer magnetization between coupled spins to create the magnetization of interest
 - evolution 2 (t_2): magnetization evolves and is detected
Some Two-Dimensional NMR Experiments

- **COSY**: Correlation Spectroscopy
- **NOESY**: Nuclear Overhauser Effect Spectroscopy
- **TOCSY**: Total Correlation Spectroscopy
- **HSQC**: Heteronuclear Single Quantum Coherence

Experiments Diagram

- **COSY**
 - Preparation: 90°
 - Evolution: 180°, 90°
 - Mixing: 90°

- **NOESY**
 - Preparation: 90°
 - Evolution: t₁
 - Mixing: τ_m

- **TOCSY**
 - Preparation: 90°
 - Evolution: t₁
 - Mixing: τ_m

- **HSQC**
 - Preparation: 180°, 90°
 - Evolution: t_{1/2}, t_{1/2}

Decoupling

- Decoupling pulse: τ
2D-NMR - FIDs are transformed in t_2, then in t_1.
Three Dimensional NMR Spectroscopy

- In general, 3D experiments include the same elements as 2D experiments, just more of them
 - in a typical 3D experiment, there are three evolution periods, the first two corresponding to the two indirectly-detected dimensions (t_1 and t_2), and the third corresponding to the directly detected dimension (t_3).
 - often, two 2D experiments are combined (cut/paste) to create a 3D experiment (NOESY-HSQC, NOESY-TOCSY, etc.)

- Modern biomolecular NMR utilizes many types of 3D experiments for resonance assignment, NOE-based distance measurement, etcetera
Heteronuclear Single Quantum Coherence

- The Heteronuclear Single Quantum Coherence (HSQC) experiment is one of the most used experiments in biomolecular NMR
- the HSQC experiment is one of the fundamental building blocks of scores of multidimensional, heteronuclear and triple resonance NMR experiments
 - the HSQC experiment correlates chemical shifts of one nucleus to another (scalar coupled)
 - the \(^1\)H-\(^{15}\)N pairs in amide groups of amino acids in proteins are convenient reporters for each amino acid
 - the \(^1\)H, \(^{15}\)N-HSQC spectrum of a protein is a "fingerprint", that can be used to monitor structural changes (ligand binding, solution conditions, etc.)
 - for highest sensitivity, uniform \(^{15}\)N labeling is used, but for more concentrated samples, even natural abundance samples can be analyzed with modern, high-sensitivity instrumentation and cryogenic probes
 - not at all limited to \(^1\)H-\(^{15}\)N: \(^1\)H-\(^{13}\)C important for organic chemistry as well as biomolecular NMR
HSQC Spectrum of Amide H-N Pairs in a Protein

- HSQC spectrum of a protein (calmodulin) in the unbound state and bound to a drug ("W-7")
- The HSQC experiment is one of the fundamental building blocks of scores of multidimensional, heteronuclear and triple resonance NMR experiments
- Chemical shift of amide 1H correlated to directly bonded 15N, for each amino acid (notice chemical shift ranges)

Ikura and coworkers, 1988

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide

HSQC Spectrum of Amide H-N Pairs in a Protein (Calmodulin) in the Unbound State and Bound to a Drug ("W-7")

- Chemical shift of amide 1H correlated to directly bonded 15N, for each amino acid (notice chemical shift ranges)

Ikura and coworkers, 1988

N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
HSQC Spectra of Other Nuclear Pairs

- HSQC (and HMQC, see later) are used to correlate many types of nuclei
- for biomolecular NMR, mostly 1H-15N, 1H-13C, 1H-31P, etc.
- example below: 13C-103Rh
Preparation Period for HSQC Experiment

- The INEPT sequence serves as the 'preparation' period for the HSQC experiment (and many other experiments)
 - remember, 1H pulses do not excite 15N, and vice versa (so, two 'channels')
 - magnetization is transferred from 1H to 15N in order to improve the polarization of 15N (sensitivity improved by $\gamma_{^1H}/\gamma_{^{15}N} \sim 10$) and to allow chemical shift evolution (during t_1) that depends on 15N chemical shift
 - initial z-magnetization is converted to $-y$ (90° x), then to antiphase x-magnetization (following τ-180-τ, no chemical shift evolution)
 - 1H 90° y and 15N 90° x) convert to antiphase 15N magnetization!!

- for this pulse sequence, τ MUST be equal to $1/(4J)$
- for amide 1H-15N groups in proteins, J is large and very uniform (~95 Hz), so, transfer is efficient (fast, $\tau \approx 2.6$ ms), which minimizes T_2 magnetization losses
Preparation Period for HSQC Experiment

- Detailed product operator calculation of the preparation period (INEPT)

- Initial z magnetization on 1H (I_{1z} or I_z) is converted to -y magnetization by the first 90° 1H pulse

- Just before the final 90° pulses, the magnetization is antiphase x-magnetization on 1H ($I_{1x}I_{2z}$ or I_xS_z)

- The I_{2z} term is removed by subtracting the results obtained with the final 1H pulse applied along y and -y
Preparation Period for HSQC Experiment

- We described earlier the equilibrium density matrix (single spin)
- there is no net chemical shift evolution during τ - 180° - τ period (chemical shift evolution is refocused, as long as both spin 1 and spin 2 each experience a 180° pulse)

$$
\begin{align*}
\frac{\pi}{2} l_{1x} + l_{2z} & \quad \rightarrow \quad -l_{1y} + l_{2z} \\
2\pi J_{1z,2z} t & \quad \rightarrow \quad -l_{1y} \cos(\pi J_{1z,2z} t) + 2l_{1x} l_{2z} \sin(\pi J_{1z,2z} t) + l_{2z} \\
\pi l_{1y} \pi l_{2y} & \quad \rightarrow \quad -l_{1y} \cos(\pi J_{1z,2z} t) + 2l_{1x} l_{2z} \sin(\pi J_{1z,2z} t) - l_{2z} \\
2\pi J_{1z,2z} t & \quad \rightarrow \quad -l_{1y} \cos^2(\pi J_{1z,2z} t) + 2l_{1x} l_{2z} \cos(\pi J_{1z,2z} t) \sin(\pi J_{1z,2z} t) \\
& \quad \quad + 2l_{1x} l_{2z} \cos(\pi J_{1z,2z} t) \sin(\pi J_{1z,2z} t) + l_{1y} \sin^2(\pi J_{1z,2z} t) - l_{2z} \\
\text{simplify} & \quad \rightarrow \quad -l_{1y} \cos(2\pi J_{1z,2z} t) + 2l_{1x} l_{2z} \sin(2\pi J_{1z,2z} t) - l_{2z} \\
t = \tau = 1/(4J) & \quad \rightarrow \quad +2l_{1x} l_{2z} - l_{2z} \\
\frac{\pi}{2} l_{1y} \frac{\pi}{2} l_{2x} & \quad \rightarrow \quad +2l_{1z} l_{2y} + l_{2y} \\
or & \quad \quad (-2l_{1z} l_{2y} + l_{2y}) - (+2l_{1z} l_{2y} + l_{2y}) = -4l_{1z} l_{2y} \quad or \quad -2l_{1z} l_{2y}
\end{align*}
$$
Evolution and Decoupling during t_1

- The t_1 evolution period includes a 180° 1H pulse in the center
 - using vector diagrams, the role of this pulse can readily be visualized
 - during the first $t_1/2$ period the component vectors of the antiphase 15N magnetization (15N with 1H in the α state – $S^{I\alpha}$, and 15N with 1H in the β state – $S^{I\beta}$) rotate according to the Larmor frequency of the 15N nucleus and move apart from one another according to the scalar coupling, J_{IS}
 - the 180° 1H pulse exchanges the 1H α and β populations (vectors are exchanged), and the second $t_1/2$ period refocuses the vectors (antiphase magnetization restored)
 - chemical shifts are NOT refocused, 15N-1H couplings ARE refocused (no net evolution of coupling)
 - so, during t_1, signal is modulated by 15N chemical shift, NOT J_{IS}

Diagram:

- 1H pulses at 0°, 180°, and 90°
- 15N pulses at 0°, 180°, and 90°
- t_1 evolution period
- $t_1/2$ period
- Decoupling pulse
- Vector diagrams illustrating the evolution and coupling effects.
Evolution and Decoupling during t_1

- During the t_1 evolution period the 15N antiphase y-magnetization evolves into y- and x-antiphase magnetization
 - the analysis here ignores scalar coupling, as we demonstrated that the 1H 180° pulse centered in the t_1 evolution period refocused the couplings
 - below, chemical shift evolution and the 1H 180° pulse are considered

$$-2l_{1z}l_{2y} \xrightarrow{\Omega_2 l_{2z} t_{1/2}} -2l_{1z}l_{2y} \cos(\Omega_2 t_1/2) + 2l_{1z}l_{2x} \sin(\Omega_2 t_1/2)$$

$$\pi l_{1x} \rightarrow 2l_{1z}l_{2y} \cos(\Omega_2 t_1/2) - 2l_{1z}l_{2x} \sin(\Omega_2 t_1/2)$$

$$\Omega_2 l_{2z} t_{1/2} \rightarrow 2l_{1z}l_{2y} \cos^2(\Omega_2 t_1/2) - 2l_{1z}l_{2x} \cos(\Omega_2 t_1/2) \sin(\Omega_2 t_1/2)$$

$$-2l_{1z}l_{2x} \cos(\Omega_2 t_1/2) \sin(\Omega_2 t_1/2) - 2l_{1z}l_{2y} \sin^2(\Omega_2 t_1/2)$$

simplify $\rightarrow 2l_{1z}l_{2y} \cos(\Omega_2 t_1) - 2l_{1z}l_{2x} \sin(\Omega_2 t_1)$

- The 15N y- and x-antiphase magnetization present following the t_1 evolution period is modulated by the rotating frame chemical shift of the 15N nucleus (Ω_2)
 - this is how the 15N chemical shift ultimately modulates the final signal detected in t_2, and how the 15N chemical shift is observed in the second dimension
\[\text{\(^{15}\text{N} \rightarrow ^{1}\text{H} \) Magnetization Transfer and Detection} \]

- Following the \(t_1 \) evolution period, the antiphase \(^{15}\text{N} \) magnetization is converted to antiphase \(^{1}\text{H} \) magnetization (and a multiple quantum term) by the \(^{15}\text{N} \) and \(^{1}\text{H} \) 90° pulses \(^{15}\text{N} \), \(^{1}\text{H} \).

- The \(\tau \)-180°-\(\tau \) period results in \(x \)-magnetization modulated by the \(^{15}\text{N} \) chemical shift (and the multiple quantum term, that is not observable).

\[
\begin{align*}
2l_x l_y \cos(\Omega_2 t_1) &- 2l_x l_z \sin(\Omega_2 t_1) & 2l_x l_y \cos(\Omega_2 t_1) \cos(\pi J_{1,2} \tau) + l_x \sin(\pi J_{1,2} \tau) \quad &2l_x l_z \cos(\Omega_2 t_1) + 2l_y l_z \sin(\Omega_2 t_1) \\
\frac{2\pi J_{1,2} l_x l_z \tau}{2} &- 2l_y l_z \cos(\Omega_2 t_1) \cos(\pi J_{1,2} \tau) + l_x \cos(\Omega_2 t_1) \sin(\pi J_{1,2} \tau) - 2l_y l_z \sin(\Omega_2 t_1) \\
\frac{\pi l_y l_z \tau}{2} &- 2l_y l_z \cos(\Omega_2 t_1) \cos^2(\pi J_{1,2} \tau) - l_x \cos(\Omega_2 t_1) \cos(\pi J_{1,2} \tau) \sin(\pi J_{1,2} \tau) \\
&\quad - 2l_y l_z \cos(\Omega_2 t_1) \sin^2(\pi J_{1,2} \tau) \\
&\quad - 2l_y l_z \sin(\Omega_2 t_1) \\
&\quad \text{simplify} \\
&\quad \tau = 1/(4J) \\
&\quad \Omega \lVert t_2 \\
&\quad \lvert l_x \cos(\Omega_2 t_1) - 2l_y l_z \sin(\Omega_2 t_1) \rvert \quad \text{second term is multiple quantum, not observed} \\
&\quad \Omega \lVert t_2 \\
&\quad \lvert l_x \cos(\Omega_2 t_1) \cos(\Omega_2 t_2) - l_y \cos(\Omega_2 t_1) \sin(\Omega_2 t_2) \rvert \\
&\quad \text{The final evolution period (} t_2 \text{) results in transverse magnetization modulated by the } {^{1}\text{H}} \text{ and } {^{15}\text{N}} \text{ chemical shifts}.
\]
A Note on Decoupling

During the t_1 evolution period, the 180° x pulse eliminates net evolution of the 1H-^{15}N scalar coupling (eliminates splitting of the ^{15}N signal by directly bonded 1H).

During the t_2 evolution period (acquisition), the 'decouple' element (^{15}N channel) eliminates ^{15}N coupling to 1H (eliminates splitting of the 1H signal by directly bonded ^{15}N).

- This is accomplished by decreasing the lifetimes of the α and β states for ^{15}N by rapidly interconverting them with many back-to-back RF pulses.
- There are many such 'broadband' decoupling schemes (names you may encounter include 'Waltz', 'MLEV', 'GARP', 'DIPSI', etcetera).

So, rather than each signal consisting of 4 peaks, no splitting in either dimension is observed, and a single peak results.
Quadrature Detection in the Indirect Dimension

- As with the directly detected dimension (t₂), in the indirect dimension (t₁) we would like to place the carrier in the center of the chemical shift range, thus necessitating quadrature detection
 - this is accomplished by changing the phase of the first ^{15}N 90° pulse from 'x' to 'y'
 - the resulting term changes from $I_z S_y$ (x-pulse) to $I_z S_x$ (y-pulse), so the ^{15}N magnetization created with the y-pulse is orthogonal to that created with the x-pulse (i.e. 90 degrees out of phase)

- Magnetization collected during t₂ is stored separately for the x- and y-pulses, and serves as the real/imaginary components for quadrature

- This method for indirect dimension quadrature detection is called hypercomplex or 'States' (after D. J. States)...also TPPI, States-TPPI, etc.

\[
\begin{align*}
\text{x:} & \quad I_z \rightarrow -I_y \rightarrow -2I_z S_z \rightarrow -2I_z S_y \rightarrow 2I_z S_y - 2I_z S_x \rightarrow -2I_y S_z + 2I_y S_x \rightarrow -I_x \cos(\Omega_2 t_1) \\
\text{y:} & \quad I_z \rightarrow -I_y \rightarrow -2I_z S_z \rightarrow -2I_z S_x \rightarrow 2I_z S_x - 2I_z S_y \rightarrow +2I_y S_z - 2I_y S_x \rightarrow +I_x \sin(\Omega_2 t_1)
\end{align*}
\]
Important Features of 1H, 15N-HSQC Spectra

- Experiment begins with 1H magnetization, then polarization is transferred to 15N: gain γ^1H/γ^{15}N factor in sensitivity (~10)
- Experiment ends with 15N magnetization transferred back to 1H for detection
 - theoretical sensitivity gain $(\gamma^1$H/γ^{15}N)3 for detecting 1H vs 15N (~1000)
 - actual gain for transferring from 15N to 1H for detection is $\sim(\gamma^1$H/γ^{15}N)$^{3/2} \approx 30$

- For a 2D experiment, must acquire enough (complex) points in t_1 for the required resolution in the indirect dimension
 - can be time consuming, especially if many scans are required per fid for S/N
 - each t_1 time point is actually 2 separate points (real/imaginary pairs, for quadrature)
 - not uncommon to acquire 128 or 256 complex points in t_1 for high resolution

- For samples of higher concentration, with high sensitivity cryogenic probes, is possible to acquire spectra at natural isotopic 15N abundance (0.37%, so this is not routine)
^{1}H, ^{13}C-HSQC

- Used ubiquitously in biomolecular NMR and small molecule NMR
 - for small molecules, with high concentrations, acquisition at natural isotopic abundance (~1.1%) is routine
 - example: mixture of D-glucose and D-xylose (5 mM each, 40 minute total acquisition time)

- gain $\gamma^{1}H/\gamma^{13}C$ factor in sensitivity (~4) for polarization transfer
- gain $(\gamma^{1}H)^3/(\gamma^{13}C)^3$ factor in sensitivity for detection (~64)
- Heteronuclear Multiple Quantum Coherence

- **HMQC** is an analogue of the HSQC
 - information content, spectral display are the same as HSQC
- In HMQC, multiple quantum magnetization evolves during t_1
 - these evolve as sums (two-quantum coherence) and differences (zero-quantum coherence) of ^1H and ^{15}N chemical shifts (Ω_1 and Ω_S)
 - rather than allow these to evolve during the entire t_1 period, the ^1H 180° pulse
 exchanges density matrix elements for zero- and two-quantum coherences

\[-2I_{1x}I_{2x} \xrightarrow{\Omega_1 \tau \Omega_2 \tau} -2I_{1x}I_{2x} \cos(\Omega_1 t/2)\cos(\Omega_2 t/2) - 2I_{1y}I_{2x} \sin(\Omega_1 t/2)\cos(\Omega_2 t/2) \]

\[-2I_{1x}I_{2y} \cos(\Omega_1 t/2)\sin(\Omega_2 t/2) - 2I_{1y}I_{2y} \sin(\Omega_1 t/2)\sin(\Omega_2 t/2) \]

\[\xrightarrow{\pi \tau} -2I_{1x}I_{2x} \cos(\Omega_1 t/2)\cos(\Omega_2 t/2) + 2I_{1y}I_{2x} \sin(\Omega_1 t/2)\cos(\Omega_2 t/2) \]

\[-2I_{1x}I_{2y} \cos(\Omega_1 t/2)\sin(\Omega_2 t/2) + 2I_{1y}I_{2y} \sin(\Omega_1 t/2)\sin(\Omega_2 t/2) \]

- result (see next pages) is just evolution according to ^{15}N chemical shift (Ω_S)

- $I_z \rightarrow -I_y \rightarrow -2I_xS_z \rightarrow -2I_xS_x \rightarrow -2I_xS_x - 2I_xS_y \rightarrow -2I_xS_x - 2I_xS_z \rightarrow I_y\sin(\Omega_2 t_1)$
Heteronuclear Multiple Quantum Coherence

- Why use HMQC? Why use HSQC?
 - information content basically the same
 - there are differences based on the relaxation of multiple quantum magnetization as opposed to single quantum
 - there are differences based on the dipolar broadening of multiple quantum coherence as opposed to single quantum
 - there are differences based on unresolved couplings that broaden signals in the directly detected dimension
 - multiple quantum magnetization does not evolve with scalar coupling (can be an advantage)
 - these can be different for 1H-15N versus 1H-13C, and size of the molecule
 - these can be subtle, and depend on the application

Preparation Period for HMQC Experiment

- For this version of the HMQC experiment, the preparation period is identical to the HSQC experiment, except for the final 90° pulse (for HMQC, only a 15N 90° pulse, no 1H 90° pulse)

\[
\begin{align*}
I_z + I_{2z} \xrightarrow{\pi/2 I_x} & -I_y + I_{2z} \\
2\pi J_{1,2} I_z I_{2z} t \xrightarrow{\pi I_y \pi I_{2y}} & -I_y \cos(\pi J_{1,2} t) + 2I_{1x} I_{2z} \sin(\pi J_{1,2} t) + I_{2z} \\
2\pi J_{1,2} I_z I_{2z} t \xrightarrow{\pi I_y \pi I_{2y}} & -I_y \cos(\pi J_{1,2} t) + 2I_{1x} I_{2z} \sin(\pi J_{1,2} t) - I_{2z} \\
\text{simplify} & -I_y \cos(2\pi J_{1,2} t) + 2I_{1x} I_{2z} \sin(2\pi J_{1,2} t) - I_{2z} \\
& t = \tau = 1/(4J) + 2I_{1x} I_{2z} - I_{2z} \\
& \pi/2 I_{2y} \xrightarrow{\pi/2 I_{1y}} + 2I_{1x} I_{2z} - I_{2z} \\
\text{or} & (-2I_{1x} I_{2z} + I_{2x}) - (+2I_{1x} I_{2z} + I_{2x}) = -4I_{1x} I_{2z} \text{ or } -2I_{1x} I_{2z} \\
- \frac{\pi}{2} I_x \text{ (first 90° pulse)} \xrightarrow{-} & -2I_{1z} I_{2y} + I_{2x}
\end{align*}
\]

- initial z magnetization on 1H (I_{1z}, or I_z) is converted to -y magnetization by the first 90° 1H pulse

- just before the final 90° pulses, the magnetization is antiphase x-magnetization on 1H ($I_{1x} I_{2z}$, or $I_x S_z$)

- the 90° 15N pulse convert the antiphase x-magnetization on 1H ($I_{1x} I_{2z}$, or $I_x S_z$) to multiple quantum x-magnetization on 15N ($I_{1x} I_{2x}$ or $I_x S_x$) (15N magnetization enhanced by $\sim \gamma^{1H}/\gamma^{15N} \approx 10$)

- The I_{2z} term is removed by subtracting the results obtained with the initial 1H pulse applied along x and -x
Evolution and Decoupling During t_1

- During the t_1 evolution period the multiple quantum magnetization evolves with the chemical shift of both 1H (Ω_1) and ^{15}N (Ω_2)
- however, the 180° 1H pulse changes the sign of the I_y terms, which exchanges two-quantum and zero-quantum terms
- this results in final terms (end of t_1) that include only ^{15}N chemical shift (Ω_2)
- in other words, 180° 1H pulse in effect refocuses 1H chemical shift evolution
- J coupling operator doesn't change multiple quantum terms (so, don't consider J coupling)

$$-2I_{1x} I_{2x} \rightarrow -2I_{1x} I_{2x} \cos(\Omega_1 t/2)\cos(\Omega_2 t/2) - 2I_{1y} I_{2x} \sin(\Omega_1 t/2)\cos(\Omega_2 t/2)$$

$$-2I_{1x} I_{2y} \cos(\Omega_1 t/2)\sin(\Omega_2 t/2) - 2I_{1y} I_{2y} \sin(\Omega_1 t/2)\sin(\Omega_2 t/2)$$

- **simplify**
 $$-2I_{1x} I_{2x} \cos(\Omega_2 t) - 2I_{1x} I_{2y} \sin(\Omega_2 t)$$
Multiple Quantum $\rightarrow ^1\text{H}$ Magnetization Transfer and Detection

- 90° ^{15}N pulse converts multiple quantum back to antiphase x-magnetization (I_xS_z)
- remaining double quantum term is not observable
- the τ -180° - τ period results in x-magnetization modulated by the ^{15}N chemical shift (and the multiple quantum term, that is not observable)

\[
-2I_{1x}I_{2x}\cos(\Omega_2t) - 2I_{1y}I_{2y}\sin(\Omega_2t) \xrightarrow{\frac{\pi}{2}I_{2x}} -2I_{1x}I_{2x}\cos(\Omega_2t) - 2I_{1x}I_{2z}\sin(\Omega_2t)
\]

\[
2\pi J_{1,2}I_{1z}I_{2z} \tau
\]

\[
-2I_{1x}I_{2x}\cos(\Omega_2t) - 2I_{1y}I_{2z}\sin(\Omega_2t)\cos(\pi J_{1,2}t) - I_{1y}\sin(\Omega_2t)\sin(\pi J_{1,2}t)
\]

\[
\pi I_{1x} \pi I_{2x}
\]

\[
-2I_{1x}I_{2x}\cos(\Omega_2t) + 2I_{1x}I_{2z}\sin(\Omega_2t)\cos(\pi J_{1,2}t) + I_{1y}\sin(\Omega_2t)\sin(\pi J_{1,2}t)
\]

\[
2\pi J_{1,2}I_{1z}I_{2z} \tau
\]

\[
-2I_{1x}I_{2x}\cos(\Omega_2t) + 2I_{1x}I_{2z}\sin(\Omega_2t)\cos^2(\pi J_{1,2}t) + I_{1y}\sin(\Omega_2t)\cos(\pi J_{1,2}t)\sin(\pi J_{1,2}t)
\]

\[
+ I_{1y}\sin(\Omega_2t)\cos(\pi J_{1,2}t)\sin(\pi J_{1,2}t) - 2I_{1x}I_{2z}\sin(\Omega_2t)\sin^2(\pi J_{1,2}t)
\]

simplify \[
-2I_{1x}I_{2x}\cos(\Omega_2t) - 2I_{1x}I_{2z}\sin(\Omega_2t)\cos(2\pi J_{1,2}t) + I_{1y}\sin(\Omega_2t)\sin(2\pi J_{1,2}t)
\]

simplify ($\tau = 1/(4J)$) \[
-2I_{1x}I_{2x}\cos(\Omega_2t) + I_{1y}\sin(\Omega_2t)\text{ multiple quantum term evolves to multiple quantum, not observable}
\]

\[
\Omega_{1z}t_2 \rightarrow I_{1y}\cos(\Omega_1t_2)\sin(\Omega_2t_2) - I_{1y}\sin(\Omega_1t_2)\sin(\Omega_2t_2)
\]

- final transverse magnetization modulated by Ω_1 and Ω_2
Heteronuclear Multiple Bond Correlation (HMBC)

- Experiment permits correlations between 1H and 15N (or 13C) via 2-, 3- or more bond couplings (as opposed to 1 bond couplings for HSQC, HMQC)
 - can be performed in either a single quantum or multiple quantum mode (here is diagrammed the multiple quantum type)
- Delays (τ) tuned to the scalar coupling of interest: still $1/(4J_{IS})$, but for coupling constants much smaller than 1-bond 1H-15N or 1H-13C
 - for 1-bond experiments, $^1J_{H,N} = 95$ Hz (for amide bond in protein), so $1/(4J) = 2.6$ ms, and $^1J_{H,C} = 125$ Hz (typical for H-C in proteins), $1/(4J) = 2.0$ ms
 - for HMBC experiments, 2- or 3-bond couplings are much smaller, say 4 Hz, so $^3J = 4$Hz, so $1/(4J) = 62.5$ ms
- Delay (τ) is also tuned to correspond to an odd integer multiple of $1/(2^1J_{IS})$ ($\tau = (2n+1)/(2^1J_{IS})$), which removes signal from 1-bond couplings
Example: Identifying Carbohydrate Linkages

- How can linkages be established? By correlating 1H nuclei on one monomer with 13C nuclei on another
 - here, the 1H chemical shift of one hydrogen nucleus on monomer '1' is correlated to 3 separate 13C atoms (each 3 bonds away), one of these on a different monomer
 - thus, the linkage between monomer '1' and monomer '3' is established
 - works even across glycosydic bonds