Dipolar Coupling and Solids NMR

March 30, 2005
Liquids v. Solids

One can collect similar spectra but some tricks are required

13C solution, sat’d glucose, 8 min

13C CP-MAS, 30 mg cellulose, 9 min
The Classical Dipole-Dipole Interaction:

\[E = \left(\frac{\mu_0}{4\pi}\right) \left(\frac{\mu_1 \cdot \mu_2}{r^3} - 3(\mu_1 \cdot r)(\mu_2 \cdot r)/r^5\right) \]

\[\mathbf{r} = i \, r_x + j \, r_y + k \, r_z = i \, r \sin \theta \cos \phi + j \, r \sin \theta \sin \phi + k \, r \cos \theta \]
Quantum Mechanical Dipolar Coupling

\[\mu = (\gamma h/2\pi)(i \mathbf{I}_x + j \mathbf{I}_y + k \mathbf{I}_z) = (\gamma h/2\pi)f(\mathbf{I}_z, \mathbf{I}_{+,\text{-}}) \]

\[\mathbf{H}_D = (\mu_0 \gamma_1 \gamma_2 h^2)/(16\pi^3 r^3)(A + B + C + D + E + F) \]

A,B,C .. Grouped by type of operator, 0,1,2 Quantum

\[A = - \mathbf{I}_{z1}\mathbf{I}_{z2}(3\cos^2\theta - 1), \quad B = (1/4)(\mathbf{I}_{+1}\mathbf{I}_{-2} + \mathbf{I}_{-1}\mathbf{I}_{+2}) (3\cos^2\theta - 1) \]

………..

\[E = -(3/4)(\mathbf{I}_{+1}\mathbf{I}_{+2})\sin^2\theta\exp(-2i\phi), \quad F = \ldots \]
To First Order Only $I_{z1}I_{z2}$ Term is Important

A doublet would result – much like scalar coupling but large: as much as -60,000 Hz for a 13C-1H pair.

Splitting are angle dependent – ranging from -60,000 to +30,000. In a solid all possibilities superimpose: The result is a powder pattern

Points at 90° on a sphere are most abundant
Other Anisotropies in NMR

\[\mathcal{H} = \mathcal{H}_{\text{CSA}} + \mathcal{H}_{\text{D}} + \mathcal{H}_{\text{Q}} \ldots \]

All share the following property:

Solution: \(< 3 \cos^2 \theta' - 1 > = 0 \)

Solids: \((3 \cos^2 \theta' - 1) \neq 0 \)
Techniques in Solids NMR

• Cross Polarization (CP)

• Magic Angle Spinning (MAS)

• High power decoupling
Cross Polarization

Magnetization transfer via dipolar coupling.

Hartman-Hahn:

\[\gamma_I B_I = \gamma_S B_S \]
Magic Angle Spinning

Magic Angle Rotation of Solids:

\[(3 \cos^2 \theta' - 1) < 3 \cos^2 \theta - 1> = 0\]

\[\theta = 54.7^\circ\]

Dipolar couplings
CSA
Quadrupolar couplings
High power decoupling

Solution $^{13}\text{C} - ^1\text{H}$ \(J = \sim 125 \text{ Hz} \)

Solid $^{13}\text{C} - ^1\text{H}$ \(J + D = \sim 125 \text{ kHz} \)
Cellulose

(10 minute spectra)
Spinning Sidebands are Frequently Seen

When rotation rate is not \gg anisotropies
Resonance position is modulated by rotation
Sidebands at the spinning frequency are produced

There are tricks that remove these:
TOSS – Total Suppression of Spinning Sidebands
180° pulses during rotor cycle dephases sideband
magnetization but preserves center band magnetization
Peptide
1,2-13C$_2$-Gly

CPMAS 5kHz dec on

CPMAS 5kHz dec off

5kHz dec on

5kHz dec off
Biomolecular Applications
Spider Silk

Nephila edulis
Nature as Engineer

- Strongest fiber
- β-sheet
- Poly-Ala = crystalline
- Poly-Gly = amorphous
Spider Silk and SS-NMR

- Torsion angle pairs to resolve backbone structure
- Ala in two different environments
- Dynamics
Rhodopsin

- Absorbs light in visible region
- Binds retinal

http://www.blackwellscience.com/matthews/rhodopsin.html
Antibiotics & bacterial growth

Schaefer Laboratory, Washington University, St. Louis, MO
SOLIDS NMR REFERENCES

